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1. Introduction

In a recent paper, Mickens [1] drew attention to the idea that the method of harmonic balance
(HB) could also easily be applied to oscillators with a single term non-linearity involving an
inverse odd-integer power by the simple expedient of raising each side of the force equation to that
power, so that in the rewritten equation the acceleration term was raised to the integer power and
the coefficients of the lowest order harmonic could then immediately be matched. One purpose of
this paper is to give both the exact expression for the frequency of oscillators with general, positive
power non-linearity in the force equation and the corresponding direct first order HB
approximate result utilizing the first Fourier coefficient, against which more approximate HB
results such as those derived in Ref. [1] may be compared. This paper then explores the effects on
the accuracy of the HB approach as successive manipulations of the underlying acceleration
equation, such as that made in Ref. [1], which apparently make the HB method easier to apply,
are carried out before balancing is effected. Explicit results are given for the case of inverse odd
and inverse even integer powers, as well as for more general rational powers. Limiting cases as the
power itself tends to zero are also investigated. Exact solutions for some examples are verified by
numerical integration of the differential equations (d.e.’s), utilizing the software ODE Workbench
[2]. Attention here is restricted primarily to rational powers less than unity in the non-linearity in
the acceleration equation. Some related material may be elicited from Gelb and Vander Velde [3],
but their emphasis was on positive integer powers, and their approach was in the somewhat
unfamiliar context of input–output describing functions.

The method of HB has been used for many instances of oscillators [4,5] and even in other fields
such as the non-linear Klein–Gordon equation [6]. An investigation of the various ways in which
it may be utilized is therefore in order. It will be found here that, the more preliminary
manipulations are made on the original d.e. before proceeding, the easier the application of the
HB method becomes, but the less accurate the results appear.
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It is first of all noted that Eq. (7b) of Ref. [1], viz.

d2x

dt2
þ x1=ð2nþ1Þ ¼ 0 ð1:1aÞ

is to be read in conjunction with the second equation of (5) in Ref. [1], which states that the ‘‘force
function’’ (second term in Eq. (1.1a) above) is understood to be an odd function of x; changing
sign when x changes sign. It is therefore perhaps more direct to include this idea into the original
equation, and rewrite Eq. (1.1a) as

d2x

dt2
þ sgnðxÞjxj1=ð2nþ1Þ ¼ 0; ð1:1bÞ

where sgnðxÞ is the sign function, equal to +1 if x > 0; 0 if x ¼ 0; and –1 if xo0: Indeed, the
desirability of this stance can be appreciated by taking the limit as n-N: Eq. (1.1a) as it stands
appears to approach .x þ 1 ¼ 0; which does not have periodic solutions. On the other hand,
Eq. (1.1b) approaches .x þ sgnðxÞ ¼ 0; which does have periodic solutions, as investigated by
Lipscomb and Mickens [7], and against which the behaviour of solutions of Eq. (1.1b) can be
compared as n becomes large. This will be elaborated upon later.

Thus modified, the particular case Eq. (8) in Ref. [1] becomes

d2x

dt2
þ sgnðxÞjxj1=3 ¼ 0: ð1:2Þ

This may be integrated once to yield an ‘‘energy equation’’

’x2 þ ð3
2
Þðx4Þ1=3 ¼ ð3

2
ÞA4=3; ð1:3Þ

where the initial conditions are

xð0Þ ¼ A; ’xð0Þ ¼ 0: ð1:4Þ

Since both terms on the left-hand side of Eq. (1.3) are always positive, these phase plane curves
are closed, and the motion is periodic. (A more formal proof of periodicity is given in Ref. [1].)

The period T for oscillations is then given by

T ¼ 4

Z A

0

dx

j ’xj
: ð1:5Þ

The successive substitutions x ¼ Ay and z ¼ y4=3 enable integral (1.5) to be expressed in terms of a
Beta function and thence in terms of Gamma functions. (For general basic mathematical formulae
and relations, see, e.g., Ref. [8, Chapter 11]). There results the explicit exact (EX) expression for
the period of this power 1

3
force law

TEX
1=3 ¼ 4

ffiffiffi
6

p ffiffiffi
p

p
½Gð3=4Þ=Gð1=4Þ�A1=3: ð1:6Þ

The numerical value of the quarter-period obtained from expression (1.6) is 1.46741610770 . This
is quoted here to so many significant figures as a check on this mathematics, or, conversely, as a
check on the accuracy of the numerical software [2]: numerical integration of the oscillator
equation (1.2) with initial conditions (1.4) and A ¼ 1; and with judicious choice of settings, gave
agreement to 11 significant figures. In all the numerical examples to follow for the exact results,
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similar agreement, to about 9 or 10 significant figures, was attained (although so many places will
not be quoted).

The angular frequency O � 2p=T corresponding to the exact result (1.6) has value 1.070451/A1/

3. By way of comparison, the HB approximation for O obtained in Ref. [1] is (4
3
)1/6/A1/3. (Note that

the dependence on the initial amplitude is the same.) The numerical value of the constant in this
HB result is 1.049115. The HB method as used in Ref. [1] therefore underestimates the frequency,
with a relative error of less than 2%.

Mickens [1] gave the HB approximation formula for the angular frequency for arbitrary inverse
odd-integer powers for Eq. (1.1). In the following, we extend both exact and HB results to more
general fractional-power equations.

2. Exact results for general positive powers

The oscillator equation with single-term positive-power non-linearity

.x ¼ 	sgnðxÞjxjp ð2:1Þ

(together with initial conditions (1.4)) corresponds to the energy equation

’x2 ¼
2

p þ 1
½Apþ1 	 jxjpþ1�: ð2:2Þ

By following a procedure similar to that described in the Introduction, it is possible to express
the exact angular frequency of solutions to Eq. (2.1) in terms of Gamma functions, here given
in a form suitable for positive powers po1: (In deriving this result, a recurrence relation [8,
Chapter 11] for the Gamma function in the numerator has been used so that its argument is
less than 1.)

OEX
p ¼

ffiffiffi
p

p
2
ffiffiffi
2

p ð1	 pÞffiffiffiffiffiffiffiffiffiffiffi
p þ 1

p G
1	 p

2ðp þ 1Þ

� �

G
1

p þ 1

� � 1=A 1	p=2ð Þ: ð2:3Þ

(Gelb and Vander Velde [3, p. 166], only for integer values of p; found an expression in terms of an
integral, but apparently did not proceed to re-express it in terms of Beta or Gamma functions.)
Some exact results for a range of rational values of po1 are included in Table 1. As p decreases,
the frequency values slowly increase.

Note that, as p-0; this tends (since Gð1
2
Þ ¼ Op) to

OEX
p-0 ¼ ðp=O8Þ=Að1=2Þ ¼ 1:110721=OA: ð2:4Þ

As indicated in the Introduction, the limiting oscillator equation as p-0 is

.x þ sgnðxÞ ¼ 0: ð2:5Þ

The solution is obtained explicitly (cf., Refs. [7,9]) for the quarter-period T=4; subject to the initial
conditions (1.4)

x ¼ A 	 ð1=2Þt2; 0ptpT=4: ð2:6Þ
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When x ¼ 0; t ¼ T=4; whence the frequency O � 2p=T of oscillations is

OEX
p¼0 ¼ ðp=O8Þ=Að1=2Þ ¼ 1:110721=OA: ð2:7Þ

Comparison with (2.4) confirms consistency: the limit value of the period of the exact solution to
the power p oscillator d.e. as p approaches zero agrees with the period of the exact solution to the
limit d.e. Physically, the two cases correspond to the limit of a power potential as its power
decreases to unity, and a V-shaped potential, respectively.

3. Direct harmonic balance via first Fourier coefficient

The direct first order HB approach [5] assumes an approximate solution to the original
oscillator d.e. (2.1) as it stands, of the form

x ¼ A cosOt; ð3:1Þ

so .x ¼ 	O2A cosOt; and ‘‘balances’’ the lowest order harmonic across the relevant equation.
Substitution into the original Eq. (2.1) and immediate application of the HB method requires the

Table 1

Comparison of some values of the angular frequency O of solutions to the non-linear oscillator equation (2.1) for

various rational powers p (0ppp0:1)

p a Exact OEX Harmonic balance

Fourier OHBF Powering once OHBP (Error) Further squaring OHBPS(Error)

1 0 1 1

3/4 	1/8 1.024957 1.025674 1.015593 (	1%) 1.008381 (	2%)

5/7 	1/7 1.028660 1.029613 1.009584 (	2%)

2/3 	1/6 1.033652 1.034982 1.020845 (	1%) 1.015309 (	2%)

3/5 	1/5 1.040749 1.042734 1.018399 (	2%)

1/2 	1/4 1.051637 1.054910 1.062252 (+1%) 1.036615 (	1%)

3/7 	2/7 1.059596 1.064045 1.022817 (	3%)

1/3 	1/3 1.070451 1.076845 1.049115[1] (	2%)

1/4 	3/8 1.080181 1.088681 1.068393 (	1%) 1.038441 (	4%)

1/5 	2/5 1.086126 1.096092 1.048122 (	3%)

1/6 	5/12 1.090133 1.101695 1.061091 (	3%) 1.033719 (	5%)

1/7 	3/7 1.093018 1.104867 1.044052 (	4%)

1/8 	7/16 1.095194 1.107679 1.054239 (	4%) 1.029635 (	6%)

1/9 	4/9 1.096894 1.109890 1.040169 (	5%)

1/10 	9/20 1.098258 1.111675 1.048670 (	5%) 1.026418 (	7%)

1/11 	5/11 1.099377 1.113145 1.036840 (	6%)

—

1/N 	1/2 1.110721 1.128379 1 (	10%)

0 	1/2 1.110721 1.128379

The constant tabulated is that appearing in the relation O=CONSTANT. Aa where a ¼ 	ð1	 pÞ=2: Eq. (2.3) gives the

exact results. Eqs. (3.4), (4.3), (4.6), (4.9), (4.12), (4.14), (5.1) give various first order harmonic balance approximations.

The last two rows in the Table correspond to the limit of the solution for inverse integer powers, and the solution of the

limit equation, respectively.
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evaluation of the first Fourier (cosine) coefficient of sgnðcosOtÞjcosOtjp: This is given by the
integral a1 ¼ ð4=pÞIpþ1; where

Is ¼
Z p=2

0

coss y dy: ð3:2Þ

The angular frequency corresponding to power p using this ‘‘Harmonic Balance Fourier’’
(HBF) approach is then

OHBF
p ¼

2ffiffiffi
p

p ffiffiffiffiffiffiffiffiffi
Ipþ1

p
=Að1	pÞ=2: ð3:3Þ

Upon use of a number of changes of variables, integral (3.2) may be expressed as a Beta
function [10, p. 412] and thence in terms of Gamma functions. The result is

OHBF
p ¼

2ðpþ2Þ=2ffiffiffi
p

p Gððp þ 2Þ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðp þ 2Þ

p 1=Að1	pÞ=2: ð3:4Þ

(Gelb and Vander Velde [3, p. 166], but only for positive integer values of p; give a slightly less
convenient form; equivalence (for integer p) to result (3.4) may be proved using the duplication
formula for Gamma functions [8].)

For p ¼ 1
3
; the numerical factor in Eq. (3.4) has value 1.076845, an error of only 0.6%, which is

less than the error, mentioned in the Introduction above, obtained in Ref. [1], which manipulated
the original d.e. first, resulting in an easier application of HB. Further numerical results for HBF
are given in the HB ‘‘Fourier’’ column in Table 1.

Note that, as p-0; Eq. (3.4) tends (since GðnÞ ¼ ðn 	 1Þ! for positive integer n) to

OHBF
p-0 ¼ ð2=OpÞ=Að1=2Þ ¼ 1:128379=OA: ð3:5Þ

Upon comparison with Eq. (2.4), this shows that, as p-0; the limit of the Harmonic Balance
Fourier result does not equal the limit of the exact result, with the numerical factor being
overestimated, albeit by less than 2%, although the amplitude dependence is correct. These results
will be compared with other method results for the limiting d.e. later.

The HB solution to the limit oscillator equation (2.5) with Eq. (3.1) may be found by noting
that in the Fourier series for sgn(cos y) the first non-zero coefficient, that of cos y, is 4=p: The first
order HB angular frequency approximation to the limit Eq. (2.5) is therefore given by

OHBF
p¼0 ¼ ð2=

ffiffiffi
p

p
Þ=A1=2 ð3:6Þ

agreeing with (3.5). Thus the limit of the HBF method period of the power p d.e. as p approaches
zero is equal to the HBF method period of the limit d.e., but this differs somewhat from the exact
result given in Section 2 above.
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4. Harmonic balance after manipulation of the underlying oscillator equation

4.1. Inverse integer powers

4.1.1. Inverse odd integers p ¼ 1=ð2n þ 1Þ
For inverse odd integers p ¼ 1=ð2n þ 1Þ; n ¼1, 2, 3,y; Mickens [1] first raised both sides of

Eq. (2.1) to the ð2n þ 1Þth power and then ‘‘balanced’’ the coefficients of the cosOt term (the
modulus sign dropping out). Use was made of the identity (cf. [8, Section 2.4.1])

cos2nþ1 y ¼
1

22n

2n þ 1

n

 !
cos yþ higher order harmonics; ð4:1Þ

where for positive integers N and MoN;

N

M

 !
�

N!

ðN 	 MÞ!M!
ð4:2Þ

and higher order harmonics are not considered. It is important to note that Eq. (4.1) is a
finite sum, with fairly simple coefficients for low n (see e.g., the standard identities in Ref. [10,
pp. 32–33]), and the first coefficient may simply be read off. For future reference, we record the
Mickens result (Eq. (24) in Ref. [1]) for the manipulated ‘‘powered’’ (P) d.e., written here in terms
of factorials and now labelling the frequency by the actual power in the oscillator d.e. (2.1)

OHBP
1=ð2nþ1Þ ¼ 2

�
n

2nþ1

	
ðn þ 1Þ!n!
ð2n þ 1Þ!


 � 1
2ð2nþ1Þ

1=A

�
n

2nþ1

	
: ð4:3Þ

For example, for n ¼2 (p ¼ 1
5
), this gives (8

5
)(1/10)/A2/5. Numerical values for several cases are given

in the HB ‘‘Powering once’’ column in Table 1. They are less accurate than values using the HB
Fourier approximate approach of Section 3 above. The ease of reading off coefficients in Eq. (4.1)
relevant to the manipulated equation, as against the more complicated evaluation of the first
Fourier coefficient integral relevant to the original unmanipulated equation, has to be offset
against a sacrifice of accuracy.

4.1.2. Inverse even integers p ¼ 1=ð2nÞ
For the HB method in the manner of Mickens [1], as summarized in Section 4.1.1. above for the

inverse-odd-integer case, the inverse-even-integer case requires some slight modification.
First of all, there is the trigonometric identity (finite sum) which has a different form [8,

Section 2.4.1]

cos2n y ¼
1

22n

ð2nÞ!

ðn!Þ2
þ even harmonic terms ð4:4Þ

for n ¼1,2,3,y: Secondly, when the (2n)th power is taken, there is a modulus remaining on the
right-hand side

ð .xÞ2n ¼ jxj: ð4:5Þ

The first term in Eq. (4.4) is easily used in the left-hand side of Eq. (4.5) for first order HB.
However, in the right-hand side of Eq. (4.5), one still needs to find the constant term in the
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Fourier cosine series of the function jcosOtj: This can be seen to be ð1
2
Þð2=pÞ2

R p=2
0 cos y dy ¼ 2=p:

Balancing constant terms in the manipulated d.e. (4.5) then yields the ‘‘Harmonic Balance
Powering’’ (HBP) formula

OHBP
1=ð2nÞ ¼

ffiffiffi
2

p 2

p

� � 1
4n

� 	
ðn!Þ2

ð2nÞ!


 �1=ð4nÞ

1=A
2n	1
4n

� 	
: ð4:6Þ

For example, for n ¼ 1 (p ¼ 1
2
), this gives ð4=pÞð1=4Þ=A1=4: For n ¼2 (p ¼ 1

4
), there results

½16=ð3pÞ�ð1=8Þ=A3=8: Some numerical results for this HBP procedure are compared with the exact
and HBF results for several values of 2n in Table 1.

4.1.3. Results as n tends to infinity

It is again interesting to investigate limits as n-N: To determine the limit as n-N of, for
instance, the HB expression (4.3) for the power law oscillator with inverse odd integer power, one
needs to invoke Stirling’s formula [8, Chapter 11] J!BðJ=eÞJOð2pJÞ for integer J; and the fact that
Jð1=JÞ-1 as J-N: The result is

OHBP
1=ð2nþ1Þ-1=Að1=2Þ: ð4:7Þ

Although this again has the same amplitude dependence as the exact result (2.7), the numerical
coefficient differs from that exact result, and underestimates the frequency now by about 10%; it
also differs from Eq. (3.6), which overestimated the frequency only slightly. Thus the limit value
of the frequency of the first order manipulated HB solution to the reciprocal odd integer power
law oscillator does not agree with the frequency of the HB solution to the limit differential
equation; and neither agrees with the exact solution. This highlights some problems which may be
associated with the HB approaches. It can similarly be shown that, in the limit as n-N; the
approximate solution (4.6) for inverse even integer powers also tends to the value on the right-
hand side of Eq. (4.7), so the HB result in this even case exhibits the same inconsistency as the odd
case above.

4.2. Powers which are ratios of odd integers

We next investigate the case when the power of the non-linearity term in the oscillator d.e. is a
fraction expressible as the ratio of (co-prime) odd integers

d2x

dt2
¼ 	sgnðxÞjxjð2mþ1=2nþ1Þ; m; n ¼ 1; 2; 3;y; man: ð4:8Þ

(The case m ¼ n is just the ordinary linear oscillator, with O ¼ 1 ðT ¼ 2p:) The case m ¼ 0; nX1
corresponds to the paper by Mickens [1]; and see Section 4.1.1 above. The case n ¼ 0; mX1;
including the case of large m, was investigated some time ago by the author [11]; see also Nayfeh
and Mook [4, p. 92]).

The HB approach may be applied to the manipulated d.e. Thus both sides of Eq. (4.8) are
raised to the (2n þ 1)th power, so that both sides contain odd powers. Eqs. (3.1) and (4.1) are used
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to obtain easily the first order HB result

OHBP
ð2mþ1Þ=ð2nþ1Þ ¼ 2

�
n	m
2nþ1

	
ð2m þ 1Þ!ðn þ 1Þ!n!
ð2n þ 1Þ!ðm þ 1Þ!m!


 �� 1
2ð2nþ1Þ

	
1=A

�
n	m
2nþ1

	
: ð4:9Þ

Some numerical values are given in the HB Powering once column in Table 1, for comparison
with exact and HBF results.

As an example of the necessity for cancelling factors in the power, one numerical example is
mentioned. For m ¼ 1; n ¼ 4; i.e., power retained as 3

9
, the HB approximate angular frequency

(for A ¼ 1) by Eq. (4.9) is 1.024. For m ¼ 0; n ¼ 1; i.e., power 1
3 used, it is 1.049. The exact value is

1.070, and is better approximated by the simplified fraction power.

4.3. Powers which are ratios involving an even integer

This section discusses oscillator equations of the form

.x ¼ 	sgnðxÞjxjðm=nÞ; ð4:10Þ

where m and n are co-prime positive integers, one of which is odd and the other even (they
cannot both be even). The amplitude dependence of O is 1=Aðn	mÞ=ð2nÞ: (For po1; mon:)
The HB approach to solving the oscillator equation (4.10) in the spirit of Ref. [1] starts off by
manipulating it by raising each side to the nth power. Then the formulae depend on whether m or n
is the even integer.

4.3.1. Powers of the form ð2m þ 1Þ=ð2nÞ
Here, for m; n ¼1,2,3,y; the manipulated d.e. takes the form

ð .xÞ2n ¼ jxj2mþ1: ð4:11Þ

In the HB approach, for the left-hand side the coefficient ‘‘reading’’ formula (4.4) is used. For the
right-hand side, the constant term in the Fourier cosine series for jcos yj2mþ1 is required. After use
has been made of a formula in Ref. [8, p. 246], the eventual result is found to be

OHBP
ð2mþ1Þ=ð2nÞ ¼

ffiffiffi
2

p 2

p

� � 1
4n

� 	
ð2mÞ!!ðn!Þ2

ð2m þ 1Þ!!ð2nÞ!


 � 1
4n

1=A
2n	2m	1

4n

� 	
; ð4:12Þ

where the double factorials have factors decreasing in steps of 2 down to 2 or 1. The power of the
amplitude A in the denominator is positive if the power of the oscillator non-linearity is less than
unity. For example, for m ¼ 1 and n ¼ 2 (power 3

4
), this gives O2 [2/(9p)](1/8)/A1/8.

4.3.2. Powers of the form ð2mÞ=ð2n þ 1Þ
Here, for m; n ¼1,2,3,y, the manipulated d.e. is

ð .xÞ2nþ1 ¼ 	sgnðxÞx2m: ð4:13Þ

In the HB approach, for the left-hand side the coefficient reading formula (4.1) is used. For the
right-hand side, the first harmonic term in the Fourier cosine series for sgnðcos yÞcos2m y is
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required. This is found to involve the same integral as occurs in Section 4.3.1. The eventual
result is

OHBP
ð2mÞ=ð2nþ1Þ ¼

ffiffiffi
2

p 2

p

� �� 1
2ð2nþ1Þ

	
ð2mÞ!!ðn þ 1Þ!n!

ð2m þ 1Þ!!ð2n þ 1Þ!


 �1=2ð2nþ1Þ

1=A

�
2n	2mþ1
2ð2nþ1Þ

	
: ð4:14Þ

For example, for m ¼ 1 and n ¼ 1 (power 2
3), this gives ½ð32Þ=ð9pÞ�ð1=6Þ=A1=6:

All rational powers have now been covered.

5. Further manipulation of the underlying oscillator equation

Where the manipulated oscillator equation still involved an odd integer power on one side and
an even integer power on the other (they cannot both be even, after the original rational power
has been simplified), it was seen above that a Fourier coefficient still had to be evaluated by
integration, rather than just reading off the first coefficient from the finite sum (4.1) or (4.4). It is
tempting in this case to manipulate the d.e. still further, by squaring (S) both sides, so that in the
subsequent HB approximation to this doubly raised d.e. the constant terms on either side may
simply be read off from the first term in identity (4.4).

This section reports on the results of this procedure, starting with the oscillator equation (4.10)
wherein one of m; n is even. In the manner just described, after first manipulating the original
oscillator d.e. by raising both sides to the nth power and then further squaring both sides, one
obtains

OHBPS
m=n ¼ 2

n	m
2n

� 	
ð2mÞ!ðn!Þ2

ð2nÞ!ðm!Þ2


 �1=ð4nÞ
1=A

n	m
2n

� 	
: ð5:1Þ

Formula (5.1) also embraces the case m ¼ 1; n ¼ 2n; i.e., the result following from the further
squaring of both sides of the d.e. (4.5). Some numerical values obtained from Eq. (5.1) are given in
the HB ‘‘Further Squaring’’ column in Table 1. They are seen to lead to greater errors than those
in the previous column, which only powered the d.e. once.

6. Discussion and conclusion

One feature in favour of the first order HB methods for oscillator equations of the type
considered in this paper is that they always predict the correct dependence on the displacement
amplitude A: However, it should be appreciated that this dependence may also be deduced from a
kind of dimensional analysis since the equations only contain one non-linear term. Specifically,
Eq. (2.1) may be written as

d2½x=A�=d½Aðp	1Þ=2t�2Bðx=AÞp; ð6:1Þ

whence

OBAðp	1Þ=2: ð6:2Þ
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From Table 1, it can be seen that as the rational power p decreases from 1 to 0, the exact
angular frequency of oscillation slowly but steadily increases to the limit value. The Harmonic
Balance Fourier value also steadily increases, but to a slightly larger (by about 2%) limiting value.
On the other hand, the table shows that, after manipulation(s) of the underlying d.e. to simplify
the use of the first order HB process, the approximate frequencies exhibit somewhat erratic
behaviour as p decreases.

For the rational powers analyzed, the HB approximations always appear to estimate the
frequency with an error of less than about 10%, so they could all be considered fairly successful.
However, since the exact values always lie between 1 and about 1.11, one could ask the question:
Is the HB result any better than the crude guess of ignoring the fact that po1 and just taking the
linear oscillator (p ¼ 1) value O ¼ 1 as an approximation? To within 10%, this crude value is a
reasonable approximation. However, Table 1 shows that the HB results are better than this,
especially for pX1

2
; and especially following less manipulation of the oscillator d.e. itself.

It therefore seems that a tacit principle of the HB approach, that the d.e. is subject to the least
manipulation before application, is well warranted. However, this better accuracy must be offset
against the comparative complications in evaluating coefficients, as compared with the easier
reading off of coefficients after manipulations of the d.e., which do subsequently lead to less
accurate approximations.
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